

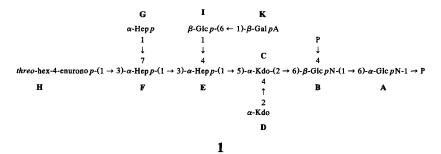
Carbohydrate Research 269 (1995) C1-C7

Preliminary communication

Structural investigation on the carbohydrate backbone of the lipopolysaccharide from *Klebsiella* pneumoniae rough mutant R20/O1⁻

Miriam Süsskind ^a, Sven Müller-Loennies ^b, Wolfgang Nimmich ^c, Helmut Brade ^a, Otto Holst ^{a,*}

Received 7 November 1994; accepted 30 November 1994


Keywords: Klebsiella pneumoniae; Lipopolysaccharide; Core/lipid A region; Galacturonic acid

Klebsiella pneumoniae is an important opportunistic Gram-negative pathogen [1] causing serious infections like pneumonia and urinary tract infections, especially in immunocompromised patients, often leading to septicemia. Thus, K. pneumoniae infections are a major cause of mortality in hospital-acquired infections [2]. Lipopolysaccharide (LPS) and capsules have been identified as virulence determinants in K. pneumoniae [1,2]. The capsular and O-antigens have been investigated extensively and to date eight O-serogroups [2] and 77 K-antigens [3] are differentiated. The majority of O-antigens have been structurally characterised [4–17]; however, nothing is known about the structural features of the core and lipid A region of the LPS. We now report the structure of the decasaccharide bisphosphate 1, representing the lipid A backbone and the major part of the core region of the LPS from K. pneumoniae rough strain R20/O1⁻.

^a Biochemische Mikrobiologie, Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, Parkallee 22, D-23845 Borstel, Germany

^b Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark ^c Institut für Medizinische Mikrobiologie, Universität Rostock, Schillingallee 70, D-18055 Rostock, Germany

^{*} Corresponding author.

Klebsiella pneumoniae rough strain R20 was isolated as a spontaneous mutant from K. pneumoniae O1:K20 (strain 889/50, [3]). It was grown in Petri dishes (18 cm in diameter) on Nähragar I (Sifin, Berlin, FRG). The bacteria were killed (1% phenol), and washed successively with ethanol, acetone (twice), and ether. The LPS was extracted from dried bacteria by the phenol-chloroform-light petroleum method [18] in a yield of 3.6% of bacterial dry mass. Compositional analyses [19] indicated the presence of Glc, Hep. GlcN, 3-deoxy-D-manno-octulopyranosonic acid (Kdo), phosphate, and the fatty acids 3OH-C14:0, C14:0, and small amounts of 2OH-C14:0. Additionally, galacturonic acid (GalA) was identified by GLC (temperature programme: 110°C for 5 min, then 5°C min⁻¹ to 250°C) and GLC-MS [20] after methanolysis of LPS (M methanolic HCl, 85°C, 4 h) and acetylation. The LPS (120 mg) was O-deacylated [21,22] (94 mg, 73.4% of the LPS), then N-deacylated [23] followed by neutralisation and extraction of the free fatty acids, and gel permeation chromatography on a column $(2.5 \times 50 \text{ cm})$ of TSK HW-40 (S) (Merck) in water. Two fractions were obtained, the major of which was lyophilised (28 mg, 23.3% of the LPS), then dissolved in water and separated by high-performance anion-exchange chromatography (HPAE) as described [24], but with the following modifications: flow rate, 4 mL min⁻¹; 30-70% M sodium acetate in 0.1 M NaOH increasing linearly over 70 min. Four fractions were detected, the major of which (eluting between 250-260 mM sodium acetate) was desalted by gel permeation chromatography and lyophilised (5 mg, 4.2% of the LPS). Its structure 1 was elucidated by 600-MHz ¹H, 150.9-MHz ¹³C, and 145-MHz ³¹P NMR spectroscopy (pD 9.4). The assigned chemical shifts, the couplings of the protons, and the NOE contacts as revealed by a NOESY spectrum are summarised in Tables 1-4. The anomeric region of the ¹H NMR spectrum contained eight signals (Table 1), three of which (residues E-G) could be assigned to heptose residues which possess the manno configuration, as revealed by their ${}^3J_{n,n+1}$ H-coupling constants (Table 2). Five anomeric signals (residues A, B, H-K) were assigned to monosaccharides possessing an axial H-2. Three of these are β -linked $(J_{1,2}, 7.5-8.5 \text{ Hz}, \text{ residues B, I, K})$ and two are α -linked $(J_{1,2}, 3.1-3.9 \text{ Hz},$ residues A and H). The signal at 5.489 ppm due to H-1 of A appeared as a double doublet indicating the esterification of O-1 by phosphate. Another signal at 5.678 ppm represented H-4 of a hex-4-enuronopyranosyl residue [25] which according to ¹H-chemical shifts and ${}^3J_{n,n+1}$ -coupling constants possesses the α -threo configuration. In the region 1.70-2.15 ppm, the characteristic signals of H-3 of two α -linked Kdo residues (C and D) were present. The resonances attributed to these residues indicated an α -(2 \rightarrow 4)-linked Kdo disaccharide [26], of which residue C was in addition substituted

Table 1 ¹H NMR data ^a for 1

Unit	Chemical shifts (δ)								
	H-1	H-2	H-3ax H-3eq	H-4	H-5	H-6a H-6b	H-7a H-7b	H-8a H-8b	
A	5.489 b	2.996	3.730	3.510	4.103	4.290 3.732			
В	4.620	2.852	3.692	3.65-3	.79 °	3.473 3.668			
C			1.900 2.117	4.131	4.235	3.703	3.832	3.871 3.669	
D			1.763 2.144	4.066	4.032	3.626	4.004	3.958 3.726	
E	5.262	4.044	4.126	4.326	4.192	4.062	3.794 3.960		
F	5.307	4.370	4.002	3.949	3.693	4.174	3.764 3.701		
G	4.896	3.994	3.851	3.857	3.645	4.002	3.666 3.729		
H	5.412	3.875	4.375	5.678					
I	4.568	3.282	3.495	3.431	3.593	3.901 4.186			
K	4.515	3.532	3.743	4.150	4.057				

^a The spectrum was measured at 600 MHz in D_2O relative to acetone (δ 2.225). Assignments were made by a phase-sensitive double quantum-filtered(DQF) COSY experiment. Monosaccharide units A-K are as shown in the formula.

at position O-5. The relative configurations of GlcN, GalA, and Glc residues were identified by their ${}^{1}H$ -chemical shifts and ${}^{3}J_{n,n+1}$ -coupling constants (Tables 1 and 2).

The ¹³C NMR spectrum (Table 3) contained nine signals in the anomeric region, that at 100.75 ppm represented C-1 of residue H (determined by ¹H, ¹³C-COSY) and C-2 of residue C (determined by a DEPT experiment). The other signals confirmed the presence of two GlcN residues (A and B, characteristic resonances of C-2 at 56.01 and 56.80 ppm which were correlated to the high-field resonances of H-2 at 2.996 and 2.852 ppm, respectively), and of two Kdo residues [characteristic signals of C-3 at 35.13 (residue C) and 35.25 (residue D) ppm, and carboxyl resonances at 175.89 and 175.60 ppm]. Two signals of carboxyl groups were attributed to C-6 of GalA K and the α -threo-hex-4-enuronopyranosyl residue H. The other ¹³C-chemical shifts of the latter were similar to those reported for the β -L-threo-hex-4-enuronopyranosyl residue obtained after deacylation of the LPS of Vibrio cholerae H11 [25]. Substitutions were identified by comparison of the data to those obtained for the unsubstituted monosaccharides [20,26,27]. Thus, residues D, G, H, and K are terminally linked. Both GlcN residues (A,B) are substituted at position O-6 (downfield shifts of ~ 9 and ~ 2.4 ppm, respectively), Kdo residue C at O-4 and O-5 ($\Delta \sim 4.3$ and ~ 2.6 ppm, respectively), heptose E at O-3 and O-4 ($\Delta \sim 4.2$ and ~ 6.4 ppm, respectively; β -shift of ~ 2.7 ppm

 $^{^{}b}$ $^{3}J_{H-1,P}$ 7.6 Hz. c H-4 and H-5.

Table 2 Observed first-order $J_{n,n+1}$ values (Hz) for 1, determined by DQF $^1\mathrm{H}, ^1\mathrm{H}\text{-}\mathrm{COSY}$

Unit ^a	$J_{1,2}$	$J_{2,3}$	$J_{3ax,4} \\ J_{3eq,4} \\ J_{3ax,3eq}$	$J_{4,5}$	$J_{5,6\mathrm{a}} \\ J_{5,6\mathrm{b}}$	$J_{6 m a,6b} \ J_{6,7 m a} \ J_{6,7 m b}$	$J_{7 m a,7b} \ J_{7,8 m a} \ J_{7,8 m b}$	$J_{8 ext{a,8b}}$
Ā	3.3	10.3	8.5	11.4	3	11.8		
В	8.5	10.3	7.3	m	8.2 4 6.3	11.8		
C			5.4 11.9	3	3	9.3	6.1	11.8
D			13.2 5.2 11.0	3	3	7.7		
E	1.5	3	13.5 9.3	10.0		5	12.0	
F	ND ^b	3	9.5	9.3		7.6 4 8.5	11.8	
G	1.4	3	10.1			0.5	11.4	
H	3	7.4	3					
I	7.5	10.2	8.6	10.8	3 6.7	12.0		
K	7.6	10.3	3	2				

^a Monosaccharide units A-K are as shown in the formula.

Table 3
¹³C NMR data ^a for 1

Unit	Chemical s	hifts (ppm)						
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
Ā	94.33	56.01 b	72.61	70.64	72.78 °	70.38		
В	102.16 ^d	56.80	75.08	73.95 ^b	75.15	63.67		
C	175.89 m	100.75 °	35.13	71.20 f	69.82	72.78 °	70.44	64.28
D	175.60 m	NA ¹	35.25	66.95	67.39	72.85	71.32 g	63.78 h
E	99.94	71.32 g	75.86	73.31	69.20 i	69.76 k	64.65	
F	102.73	69.47	81.32	66.07	72.78	69.20 i	71.78	
G	102.16 ^d	70.78	71.32 g	66.95	72.38	69.76 k	63.78 h	
H	100.75 °	71.14	66.49	107.47	146.34	170.40		
I	102.47	74.67	76.05	70.74	76.79	69.36		
K	103.39	71.24	73.38	71.20 ^f	76.39	175.28 m		

^a The spectrum was measured at 150 MHz in D_2O relative to dioxane (67.40 ppm). Monosaccharide units A-K are as shown in the formula. ^{b 3} $J_{C-2,P}$ 7 Hz. $^2J_{C-4',P}$ 5 Hz. ^{c-k} Non-resolved.

^b ND, Not determined.

¹ NA, Not assigned.

m Interchangeable.

Unit	NOE signal	b	
	From	Intraunit	Interunit
A	A 1	A2 (m)	
В	B 1	B 3 (m), B 5 (s)	A6a (w)
C	C3ax	C4 (w), C6 (w), C3 eq (s)	E5 (w), D 6 (m)
	C3eq	C4 (m), C6 (w), C3 ax (s)	D 6 (s)
	C5	C4 (m), C6 (m), C7 (w)	E2 (w), E7b (w)
D	D 3 <i>eq</i>	D4 (w), D3 ax (s)	E5 (w)
E	E 1	E2 (m)	C5 (m), C7 (s)
	E 2	E3 (w)	C5 (w), C7 (w), C6 (w)
F	F 1	F2 (m)	E2 (w), E3 (s), I2 (w)
	F 2	F3 (w)	I6a (w), I6b (w)
G	G 1	G2 (w), G3 (w)	F6 (w), F7a (m), F7b (m)
H	H 1	H2 (m)	F2 (w), F3 (s), F4 (m)
I	I 1	I3 (m), I5 (s)	E4 (s), E6 (s)
K	K 1	K3 (w), K5 (w)	E4 (w), I6a (m), I6b (w)

Table 4
NOE signals of 1, observed in the NOESY spectrum ^a, which were important for the structural determination

for the C-5 resonance), heptose **F** at O-3 and O-7 [$\Delta \sim 9.7$ and ~ 8 ppm, respectively; β -shifts of the resonances of C-2 (~ 1.3 ppm) and C-4 (~ 0.8 ppm)], and Glc I at O-6 ($\Delta \sim 7.9$ ppm).

In the ³¹P NMR spectrum, two signals at 2.84 and 4.29 ppm were found which were assigned to phosphate residues at C-1 of GlcN A and C-4 of GlcN B, respectively [28].

The intramolecular NOE contacts (Table 4) obtained from a NOESY spectrum confirmed the α - and β -gluco configuration of residues **A** and **B**, the β -gluco configuration of **I**, and the α - and β -galacto configuration of residues **H** and **K**. The sequence of the residues was established by analysis of the interresidue NOE contacts. Proton **H1** gave NOE signals to protons **F2**, 3, and 4, **F1** to **E2** and 3, and **E1** to **C5**, 7, and 8a, thus establishing the tetrasaccharide unit **H-F-E-C**. This unit is substituted at residue **F** by residue **G** (NOE, **G1** to **F7a**,b and 6), at **E** by residue **I** (**I1** to **E4** and 6), and at **C** by **D** in α -(2 \rightarrow 4) linkage which was elucidated by the characteristic NOE contact **D6** to **C3** ax, eq [26]. Furthermore, residue **I** is substituted by **K** (**K1** to **I6a**,b), and **A** by **B** (**B1** to **A6a**). Consequently, although not indicated by NOE contacts, **C** must be linked to **B**. In summary, the NOE signals and the data from the ¹H, ¹³C, and ³¹P NMR spectra determine the structure of the isolated decasaccharide as **1**.

The presence of the *threo*-hex-4-enuronopyranosyl residue **H** indicates a substituent at O-4 of the GalA residue linked to Hep **F**, which has been eliminated by treatment with hot alkali. The nature of the eliminated substituent is not known. However, the isolated decasaccharide 1 already reveals characteristic features of the core region of K. *pneumoniae* strain R20. First of all, the lipid A backbone consists of β -Glc pN-(1 \rightarrow 6)- α -Glc pN 1,4'-bisphosphate which represents the structural principle of lipid A of all enterobacterial and many other LPSs [29]. Since this structure is highly conserved, it is

^a Spectra were recorded at 600 MHz at 300 K; the mixing time was 200 ms. Monosaccharide units A-K are as shown in the formula.

b w, Weak; m, medium; s, strong.

probable that it is generally present in *Klebsiella* lipid A. The structural element characteristic of enterobacterial core regions [30], α -Hep-(1 \rightarrow 7)- α -Hep-(1 \rightarrow 3)- α -Hep-(1 \rightarrow 5)[α -Kdo-(2 \rightarrow 4)]- α -Kdo which is substituted at O-3 of the second Hep by a hexose residue, is also present in the decasaccharide. However, the substitution at O-3 by GalA was previously found only in the core region of *Proteus mirabilis* R110/1959, whereas the other enterobacterial core oligosaccharides possess a Glc residue at that position. A major difference of the core region of *K. pneumoniae* strain R20 compared to the other core regions of *Enterobacteriaceae* investigated so far is the lack of phosphate. Negative charges are provided only by Kdo and GalA residues. Furthermore, the substitution at O-4 of the first Hep is only present in *P. mirabilis* R110/1959 (a Glc disaccharide) and *Yersinia enterocolitica* 75S (Glc).

References

- [1] J.Z. Montgomerie, Rev. Infect. Dis., 1 (1979) 736-753.
- [2] P. Williams and J.M. Tomas, Rev. Med. Microbiol., 1 (1990) 196-204.
- [3] I. Orskov and F. Orskov, in T. Bergan (Ed.), Methods in Microbiology, Vol. 14, Academic, New York, NY, 1984, pp 143-164.
- [4] H. Björndal and B. Lindberg, Acta Chem. Scand., 25 (1971) 750.
- [5] H. Björndal, B. Lindberg, J. Lönngren, K. Nilsson, and W. Nimmich, Acta Chem. Scand., 26 (1972) 1269-1271.
- [6] B. Lindberg, J. Lönngren, and W. Nimmich, Acta Chem. Scand., 26 (1972) 2231-2236.
- [7] B. Lindberg and J. Lönngren, Carbohydr. Res., 23 (1972) 47-55.
- [8] M. Curvall, B. Lindberg, J. Lönngren, and W. Nimmich, Acta Chem. Scand., 27 (1973) 2645-2649.
- [9] B. Lindberg, J. Lönngren, W. Nimmich, and U. Rudén, Acta Chem. Scand., 27 (1973) 3787-3790.
- [10] M. Curvall, U. Rudén, B. Lindberg, J. Lönngren, and W. Nimmich, Acta Chem. Scand., 27 (1973) 4019-4021.
- [11] C. Erbing, B. Lindberg, and J. Lönngren, Carbohydr. Res., 56 (1977) 377-381.
- [12] C. Whitfield, J.C. Richards, M.B. Perry, B.R. Clarke, and L.L. MacLean, J. Bacteriol., 173 (1991) 1420-1431.
- [13] O. Kol, J.-M. Wieruszeski, G. Strecker, J. Montreuil, and B. Fournet, Carbohydr. Res., 217 (1991) 117-125.
- [14] O. Kol, J.-M. Wieruszeski, G. Strecker, B. Fournet, R. Zalisz, and P. Smets, Carbohydr. Res., 236 (1992) 339-344.
- [15] C. Whitfield, M.B. Perry, L.L. MacLean, and S.H. Yu, J. Bacteriol., 174 (1992) 4913-4919.
- [16] L.L. MacLean, C. Whitfield, and M.B. Perry, Carbohydr. Res., 239 (1993) 325-328.
- [17] R.F. Kelly, W.B. Severn, J.C. Richards, M.B. Perry, L.L. MacLean, J.M. Tomas, S. Merino, and C. Whitfield, Mol. Microbiol., 10 (1993) 615-625.
- [18] C. Galanos, O. Lüderitz, and O. Westphal, Eur. J. Biochem., 9 (1969) 245-249.
- [19] W. Kaca, J. de Jongh-Leuvenink, U. Zähringer, E. Th. Rietschel, H. Brade, J. Verhoef, and V. Sinnwell, Carbohydr. Res., 179 (1988) 289-299.
- [20] S. Müller-Loennies, O. Holst, and H. Brade, Eur. J. Biochem., 224 (1994) 751-760.
- [21] Y. Haishima, O. Holst, and H. Brade, Eur. J. Biochem., 203 (1992) 127-134.
- [22] Y. Haishima, O. Holst, and H. Brade, Eur. J. Biochem., 207 (1992) 1129.
- [23] O. Holst, J.E. Thomas-Oates, and H. Brade, Eur. J. Biochem., 222 (1994) 183-194.
- [24] E.V. Vinogradov, J.E. Thomas-Oates, H. Brade, and O. Holst, J. Endotox. Res., 1 (1994) 199-206.
- [25] K. Bock, E.V. Vinogradov, O. Holst, and H. Brade, Eur. J. Biochem., 225 (1994) 1029-1039.
- [26] K. Bock, J.U. Thomsen, P. Kosma, R. Christian, O. Holst, and H. Brade, Carbohydr. Res., 229 (1992) 213-224.
- [27] K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-71.

- [28] O. Holst, W. Broer, J.E. Thomas-Oates, U. Mamat, and H. Brade, Eur. J. Biochem., 214 (1993) 703-710.
- [29] E. Th. Rietschel, L. Brade, B. Lindner, and U. Zähringer, in D.C. Morisson and J.L. Ryan (Eds.), Bacterial Endotoxic Lipopolysaccharides, Vol. 1, CRC Press, Boca Raton, FL, 1992, pp 3-41.
- [30] O. Holst and H. Brade, in D.C. Morisson and J.L. Ryan (Eds.), Bacterial Endotoxic Lipopolysaccharides, Vol. 1, CRC Press, Boca Raton, FL, 1992, pp 135-170.